Copied to
clipboard

G = C23.409C24order 128 = 27

126th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.409C24, C22.2042+ (1+4), C22.1552- (1+4), C4⋊C4.22Q8, C428C4.27C2, C2.12(Q83Q8), C2.25(D43Q8), C4.31(C42.C2), C22.92(C22×Q8), (C22×C4).831C23, (C2×C42).529C22, C23.83C23.7C2, C23.63C23.20C2, C2.C42.160C22, C23.65C23.46C2, C2.33(C22.36C24), C2.25(C22.50C24), C2.39(C22.47C24), C2.54(C23.36C23), (C4×C4⋊C4).55C2, (C2×C4).45(C2×Q8), C2.14(C2×C42.C2), (C2×C4).131(C4○D4), (C2×C4⋊C4).275C22, C22.286(C2×C4○D4), SmallGroup(128,1241)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.409C24
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C23.409C24
C1C23 — C23.409C24
C1C23 — C23.409C24
C1C23 — C23.409C24

Subgroups: 308 in 190 conjugacy classes, 104 normal (42 characteristic)
C1, C2 [×7], C4 [×4], C4 [×18], C22 [×7], C2×C4 [×14], C2×C4 [×38], C23, C42 [×8], C4⋊C4 [×4], C4⋊C4 [×22], C22×C4 [×7], C22×C4 [×8], C2.C42 [×2], C2.C42 [×14], C2×C42 [×3], C2×C42 [×2], C2×C4⋊C4 [×6], C2×C4⋊C4 [×8], C4×C4⋊C4 [×2], C428C4, C23.63C23 [×2], C23.65C23 [×4], C23.65C23 [×2], C23.83C23 [×4], C23.409C24

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×8], C24, C42.C2 [×4], C22×Q8, C2×C4○D4 [×4], 2+ (1+4), 2- (1+4), C2×C42.C2, C23.36C23, C22.36C24, C22.47C24, D43Q8, C22.50C24, Q83Q8, C23.409C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=ca=ac, e2=b, f2=ba=ab, g2=a, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 77)(2 78)(3 79)(4 80)(5 127)(6 128)(7 125)(8 126)(9 39)(10 40)(11 37)(12 38)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)(29 36)(30 33)(31 34)(32 35)(41 46)(42 47)(43 48)(44 45)(49 54)(50 55)(51 56)(52 53)(57 62)(58 63)(59 64)(60 61)(65 70)(66 71)(67 72)(68 69)(73 97)(74 98)(75 99)(76 100)(81 86)(82 87)(83 88)(84 85)(89 94)(90 95)(91 96)(92 93)(101 108)(102 105)(103 106)(104 107)(109 116)(110 113)(111 114)(112 115)(117 124)(118 121)(119 122)(120 123)
(1 106)(2 107)(3 108)(4 105)(5 100)(6 97)(7 98)(8 99)(9 66)(10 67)(11 68)(12 65)(13 47)(14 48)(15 45)(16 46)(17 43)(18 44)(19 41)(20 42)(21 55)(22 56)(23 53)(24 54)(25 51)(26 52)(27 49)(28 50)(29 63)(30 64)(31 61)(32 62)(33 59)(34 60)(35 57)(36 58)(37 69)(38 70)(39 71)(40 72)(73 128)(74 125)(75 126)(76 127)(77 103)(78 104)(79 101)(80 102)(81 115)(82 116)(83 113)(84 114)(85 111)(86 112)(87 109)(88 110)(89 123)(90 124)(91 121)(92 122)(93 119)(94 120)(95 117)(96 118)
(1 79)(2 80)(3 77)(4 78)(5 125)(6 126)(7 127)(8 128)(9 37)(10 38)(11 39)(12 40)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)(29 34)(30 35)(31 36)(32 33)(41 48)(42 45)(43 46)(44 47)(49 56)(50 53)(51 54)(52 55)(57 64)(58 61)(59 62)(60 63)(65 72)(66 69)(67 70)(68 71)(73 99)(74 100)(75 97)(76 98)(81 88)(82 85)(83 86)(84 87)(89 96)(90 93)(91 94)(92 95)(101 106)(102 107)(103 108)(104 105)(109 114)(110 115)(111 116)(112 113)(117 122)(118 123)(119 124)(120 121)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 122 106 92)(2 120 107 94)(3 124 108 90)(4 118 105 96)(5 114 100 84)(6 112 97 86)(7 116 98 82)(8 110 99 88)(9 26 66 52)(10 24 67 54)(11 28 68 50)(12 22 65 56)(13 63 47 29)(14 59 48 33)(15 61 45 31)(16 57 46 35)(17 64 43 30)(18 60 44 34)(19 62 41 32)(20 58 42 36)(21 69 55 37)(23 71 53 39)(25 70 51 38)(27 72 49 40)(73 81 128 115)(74 87 125 109)(75 83 126 113)(76 85 127 111)(77 119 103 93)(78 123 104 89)(79 117 101 95)(80 121 102 91)
(1 111 103 84)(2 86 104 115)(3 109 101 82)(4 88 102 113)(5 117 76 90)(6 96 73 121)(7 119 74 92)(8 94 75 123)(9 29 71 58)(10 64 72 33)(11 31 69 60)(12 62 70 35)(13 50 42 21)(14 25 43 56)(15 52 44 23)(16 27 41 54)(17 22 48 51)(18 53 45 26)(19 24 46 49)(20 55 47 28)(30 40 59 67)(32 38 57 65)(34 68 61 37)(36 66 63 39)(77 114 106 85)(78 81 107 112)(79 116 108 87)(80 83 105 110)(89 99 120 126)(91 97 118 128)(93 125 122 98)(95 127 124 100)
(1 20 77 13)(2 14 78 17)(3 18 79 15)(4 16 80 19)(5 68 127 69)(6 70 128 65)(7 66 125 71)(8 72 126 67)(9 74 39 98)(10 99 40 75)(11 76 37 100)(12 97 38 73)(21 84 28 85)(22 86 25 81)(23 82 26 87)(24 88 27 83)(29 92 36 93)(30 94 33 89)(31 90 34 95)(32 96 35 91)(41 105 46 102)(42 103 47 106)(43 107 48 104)(44 101 45 108)(49 113 54 110)(50 111 55 114)(51 115 56 112)(52 109 53 116)(57 121 62 118)(58 119 63 122)(59 123 64 120)(60 117 61 124)

G:=sub<Sym(128)| (1,77)(2,78)(3,79)(4,80)(5,127)(6,128)(7,125)(8,126)(9,39)(10,40)(11,37)(12,38)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27)(29,36)(30,33)(31,34)(32,35)(41,46)(42,47)(43,48)(44,45)(49,54)(50,55)(51,56)(52,53)(57,62)(58,63)(59,64)(60,61)(65,70)(66,71)(67,72)(68,69)(73,97)(74,98)(75,99)(76,100)(81,86)(82,87)(83,88)(84,85)(89,94)(90,95)(91,96)(92,93)(101,108)(102,105)(103,106)(104,107)(109,116)(110,113)(111,114)(112,115)(117,124)(118,121)(119,122)(120,123), (1,106)(2,107)(3,108)(4,105)(5,100)(6,97)(7,98)(8,99)(9,66)(10,67)(11,68)(12,65)(13,47)(14,48)(15,45)(16,46)(17,43)(18,44)(19,41)(20,42)(21,55)(22,56)(23,53)(24,54)(25,51)(26,52)(27,49)(28,50)(29,63)(30,64)(31,61)(32,62)(33,59)(34,60)(35,57)(36,58)(37,69)(38,70)(39,71)(40,72)(73,128)(74,125)(75,126)(76,127)(77,103)(78,104)(79,101)(80,102)(81,115)(82,116)(83,113)(84,114)(85,111)(86,112)(87,109)(88,110)(89,123)(90,124)(91,121)(92,122)(93,119)(94,120)(95,117)(96,118), (1,79)(2,80)(3,77)(4,78)(5,125)(6,126)(7,127)(8,128)(9,37)(10,38)(11,39)(12,40)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25)(29,34)(30,35)(31,36)(32,33)(41,48)(42,45)(43,46)(44,47)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(65,72)(66,69)(67,70)(68,71)(73,99)(74,100)(75,97)(76,98)(81,88)(82,85)(83,86)(84,87)(89,96)(90,93)(91,94)(92,95)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,122,106,92)(2,120,107,94)(3,124,108,90)(4,118,105,96)(5,114,100,84)(6,112,97,86)(7,116,98,82)(8,110,99,88)(9,26,66,52)(10,24,67,54)(11,28,68,50)(12,22,65,56)(13,63,47,29)(14,59,48,33)(15,61,45,31)(16,57,46,35)(17,64,43,30)(18,60,44,34)(19,62,41,32)(20,58,42,36)(21,69,55,37)(23,71,53,39)(25,70,51,38)(27,72,49,40)(73,81,128,115)(74,87,125,109)(75,83,126,113)(76,85,127,111)(77,119,103,93)(78,123,104,89)(79,117,101,95)(80,121,102,91), (1,111,103,84)(2,86,104,115)(3,109,101,82)(4,88,102,113)(5,117,76,90)(6,96,73,121)(7,119,74,92)(8,94,75,123)(9,29,71,58)(10,64,72,33)(11,31,69,60)(12,62,70,35)(13,50,42,21)(14,25,43,56)(15,52,44,23)(16,27,41,54)(17,22,48,51)(18,53,45,26)(19,24,46,49)(20,55,47,28)(30,40,59,67)(32,38,57,65)(34,68,61,37)(36,66,63,39)(77,114,106,85)(78,81,107,112)(79,116,108,87)(80,83,105,110)(89,99,120,126)(91,97,118,128)(93,125,122,98)(95,127,124,100), (1,20,77,13)(2,14,78,17)(3,18,79,15)(4,16,80,19)(5,68,127,69)(6,70,128,65)(7,66,125,71)(8,72,126,67)(9,74,39,98)(10,99,40,75)(11,76,37,100)(12,97,38,73)(21,84,28,85)(22,86,25,81)(23,82,26,87)(24,88,27,83)(29,92,36,93)(30,94,33,89)(31,90,34,95)(32,96,35,91)(41,105,46,102)(42,103,47,106)(43,107,48,104)(44,101,45,108)(49,113,54,110)(50,111,55,114)(51,115,56,112)(52,109,53,116)(57,121,62,118)(58,119,63,122)(59,123,64,120)(60,117,61,124)>;

G:=Group( (1,77)(2,78)(3,79)(4,80)(5,127)(6,128)(7,125)(8,126)(9,39)(10,40)(11,37)(12,38)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27)(29,36)(30,33)(31,34)(32,35)(41,46)(42,47)(43,48)(44,45)(49,54)(50,55)(51,56)(52,53)(57,62)(58,63)(59,64)(60,61)(65,70)(66,71)(67,72)(68,69)(73,97)(74,98)(75,99)(76,100)(81,86)(82,87)(83,88)(84,85)(89,94)(90,95)(91,96)(92,93)(101,108)(102,105)(103,106)(104,107)(109,116)(110,113)(111,114)(112,115)(117,124)(118,121)(119,122)(120,123), (1,106)(2,107)(3,108)(4,105)(5,100)(6,97)(7,98)(8,99)(9,66)(10,67)(11,68)(12,65)(13,47)(14,48)(15,45)(16,46)(17,43)(18,44)(19,41)(20,42)(21,55)(22,56)(23,53)(24,54)(25,51)(26,52)(27,49)(28,50)(29,63)(30,64)(31,61)(32,62)(33,59)(34,60)(35,57)(36,58)(37,69)(38,70)(39,71)(40,72)(73,128)(74,125)(75,126)(76,127)(77,103)(78,104)(79,101)(80,102)(81,115)(82,116)(83,113)(84,114)(85,111)(86,112)(87,109)(88,110)(89,123)(90,124)(91,121)(92,122)(93,119)(94,120)(95,117)(96,118), (1,79)(2,80)(3,77)(4,78)(5,125)(6,126)(7,127)(8,128)(9,37)(10,38)(11,39)(12,40)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25)(29,34)(30,35)(31,36)(32,33)(41,48)(42,45)(43,46)(44,47)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(65,72)(66,69)(67,70)(68,71)(73,99)(74,100)(75,97)(76,98)(81,88)(82,85)(83,86)(84,87)(89,96)(90,93)(91,94)(92,95)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,122,106,92)(2,120,107,94)(3,124,108,90)(4,118,105,96)(5,114,100,84)(6,112,97,86)(7,116,98,82)(8,110,99,88)(9,26,66,52)(10,24,67,54)(11,28,68,50)(12,22,65,56)(13,63,47,29)(14,59,48,33)(15,61,45,31)(16,57,46,35)(17,64,43,30)(18,60,44,34)(19,62,41,32)(20,58,42,36)(21,69,55,37)(23,71,53,39)(25,70,51,38)(27,72,49,40)(73,81,128,115)(74,87,125,109)(75,83,126,113)(76,85,127,111)(77,119,103,93)(78,123,104,89)(79,117,101,95)(80,121,102,91), (1,111,103,84)(2,86,104,115)(3,109,101,82)(4,88,102,113)(5,117,76,90)(6,96,73,121)(7,119,74,92)(8,94,75,123)(9,29,71,58)(10,64,72,33)(11,31,69,60)(12,62,70,35)(13,50,42,21)(14,25,43,56)(15,52,44,23)(16,27,41,54)(17,22,48,51)(18,53,45,26)(19,24,46,49)(20,55,47,28)(30,40,59,67)(32,38,57,65)(34,68,61,37)(36,66,63,39)(77,114,106,85)(78,81,107,112)(79,116,108,87)(80,83,105,110)(89,99,120,126)(91,97,118,128)(93,125,122,98)(95,127,124,100), (1,20,77,13)(2,14,78,17)(3,18,79,15)(4,16,80,19)(5,68,127,69)(6,70,128,65)(7,66,125,71)(8,72,126,67)(9,74,39,98)(10,99,40,75)(11,76,37,100)(12,97,38,73)(21,84,28,85)(22,86,25,81)(23,82,26,87)(24,88,27,83)(29,92,36,93)(30,94,33,89)(31,90,34,95)(32,96,35,91)(41,105,46,102)(42,103,47,106)(43,107,48,104)(44,101,45,108)(49,113,54,110)(50,111,55,114)(51,115,56,112)(52,109,53,116)(57,121,62,118)(58,119,63,122)(59,123,64,120)(60,117,61,124) );

G=PermutationGroup([(1,77),(2,78),(3,79),(4,80),(5,127),(6,128),(7,125),(8,126),(9,39),(10,40),(11,37),(12,38),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27),(29,36),(30,33),(31,34),(32,35),(41,46),(42,47),(43,48),(44,45),(49,54),(50,55),(51,56),(52,53),(57,62),(58,63),(59,64),(60,61),(65,70),(66,71),(67,72),(68,69),(73,97),(74,98),(75,99),(76,100),(81,86),(82,87),(83,88),(84,85),(89,94),(90,95),(91,96),(92,93),(101,108),(102,105),(103,106),(104,107),(109,116),(110,113),(111,114),(112,115),(117,124),(118,121),(119,122),(120,123)], [(1,106),(2,107),(3,108),(4,105),(5,100),(6,97),(7,98),(8,99),(9,66),(10,67),(11,68),(12,65),(13,47),(14,48),(15,45),(16,46),(17,43),(18,44),(19,41),(20,42),(21,55),(22,56),(23,53),(24,54),(25,51),(26,52),(27,49),(28,50),(29,63),(30,64),(31,61),(32,62),(33,59),(34,60),(35,57),(36,58),(37,69),(38,70),(39,71),(40,72),(73,128),(74,125),(75,126),(76,127),(77,103),(78,104),(79,101),(80,102),(81,115),(82,116),(83,113),(84,114),(85,111),(86,112),(87,109),(88,110),(89,123),(90,124),(91,121),(92,122),(93,119),(94,120),(95,117),(96,118)], [(1,79),(2,80),(3,77),(4,78),(5,125),(6,126),(7,127),(8,128),(9,37),(10,38),(11,39),(12,40),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25),(29,34),(30,35),(31,36),(32,33),(41,48),(42,45),(43,46),(44,47),(49,56),(50,53),(51,54),(52,55),(57,64),(58,61),(59,62),(60,63),(65,72),(66,69),(67,70),(68,71),(73,99),(74,100),(75,97),(76,98),(81,88),(82,85),(83,86),(84,87),(89,96),(90,93),(91,94),(92,95),(101,106),(102,107),(103,108),(104,105),(109,114),(110,115),(111,116),(112,113),(117,122),(118,123),(119,124),(120,121)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,122,106,92),(2,120,107,94),(3,124,108,90),(4,118,105,96),(5,114,100,84),(6,112,97,86),(7,116,98,82),(8,110,99,88),(9,26,66,52),(10,24,67,54),(11,28,68,50),(12,22,65,56),(13,63,47,29),(14,59,48,33),(15,61,45,31),(16,57,46,35),(17,64,43,30),(18,60,44,34),(19,62,41,32),(20,58,42,36),(21,69,55,37),(23,71,53,39),(25,70,51,38),(27,72,49,40),(73,81,128,115),(74,87,125,109),(75,83,126,113),(76,85,127,111),(77,119,103,93),(78,123,104,89),(79,117,101,95),(80,121,102,91)], [(1,111,103,84),(2,86,104,115),(3,109,101,82),(4,88,102,113),(5,117,76,90),(6,96,73,121),(7,119,74,92),(8,94,75,123),(9,29,71,58),(10,64,72,33),(11,31,69,60),(12,62,70,35),(13,50,42,21),(14,25,43,56),(15,52,44,23),(16,27,41,54),(17,22,48,51),(18,53,45,26),(19,24,46,49),(20,55,47,28),(30,40,59,67),(32,38,57,65),(34,68,61,37),(36,66,63,39),(77,114,106,85),(78,81,107,112),(79,116,108,87),(80,83,105,110),(89,99,120,126),(91,97,118,128),(93,125,122,98),(95,127,124,100)], [(1,20,77,13),(2,14,78,17),(3,18,79,15),(4,16,80,19),(5,68,127,69),(6,70,128,65),(7,66,125,71),(8,72,126,67),(9,74,39,98),(10,99,40,75),(11,76,37,100),(12,97,38,73),(21,84,28,85),(22,86,25,81),(23,82,26,87),(24,88,27,83),(29,92,36,93),(30,94,33,89),(31,90,34,95),(32,96,35,91),(41,105,46,102),(42,103,47,106),(43,107,48,104),(44,101,45,108),(49,113,54,110),(50,111,55,114),(51,115,56,112),(52,109,53,116),(57,121,62,118),(58,119,63,122),(59,123,64,120),(60,117,61,124)])

Matrix representation G ⊆ GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
400000
040000
004000
000400
000010
000001
,
400000
040000
001000
000100
000010
000001
,
030000
300000
003200
001200
000021
000003
,
020000
200000
002000
000200
000034
000032
,
040000
100000
002000
004300
000020
000002
,
400000
040000
004000
000400
000042
000041

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,3,1,0,0,0,0,2,2,0,0,0,0,0,0,2,0,0,0,0,0,1,3],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,3,0,0,0,0,4,2],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,2,4,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,4,0,0,0,0,2,1] >;

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim1111112244
type++++++-+-
imageC1C2C2C2C2C2Q8C4○D42+ (1+4)2- (1+4)
kernelC23.409C24C4×C4⋊C4C428C4C23.63C23C23.65C23C23.83C23C4⋊C4C2×C4C22C22
# reps12126441611

In GAP, Magma, Sage, TeX

C_2^3._{409}C_2^4
% in TeX

G:=Group("C2^3.409C2^4");
// GroupNames label

G:=SmallGroup(128,1241);
// by ID

G=gap.SmallGroup(128,1241);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,232,758,723,268,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c*a=a*c,e^2=b,f^2=b*a=a*b,g^2=a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽